direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C22×C7⋊C3, C14⋊2C6, C7⋊2(C2×C6), (C2×C14)⋊3C3, SmallGroup(84,9)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C7⋊C3 — C2×C7⋊C3 — C22×C7⋊C3 |
C7 — C22×C7⋊C3 |
Generators and relations for C22×C7⋊C3
G = < a,b,c,d | a2=b2=c7=d3=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >
Character table of C22×C7⋊C3
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | 6B | 6C | 6D | 6E | 6F | 7A | 7B | 14A | 14B | 14C | 14D | 14E | 14F | |
size | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | ζ6 | ζ32 | ζ65 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ6 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ6 | ζ3 | ζ65 | ζ32 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 6 |
ρ7 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 6 |
ρ8 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | ζ65 | ζ3 | ζ6 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ9 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ10 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ11 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 6 |
ρ12 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ65 | ζ32 | ζ6 | ζ3 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 6 |
ρ13 | 3 | -3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | 1-√-7/2 | 1+√-7/2 | -1-√-7/2 | -1+√-7/2 | 1-√-7/2 | 1+√-7/2 | complex lifted from C2×C7⋊C3 |
ρ14 | 3 | -3 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | 1-√-7/2 | -1-√-7/2 | 1+√-7/2 | 1-√-7/2 | -1+√-7/2 | 1+√-7/2 | complex lifted from C2×C7⋊C3 |
ρ15 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ16 | 3 | 3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | 1+√-7/2 | 1+√-7/2 | 1-√-7/2 | 1-√-7/2 | -1-√-7/2 | complex lifted from C2×C7⋊C3 |
ρ17 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ18 | 3 | -3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | 1+√-7/2 | 1-√-7/2 | -1+√-7/2 | -1-√-7/2 | 1+√-7/2 | 1-√-7/2 | complex lifted from C2×C7⋊C3 |
ρ19 | 3 | 3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | 1-√-7/2 | 1-√-7/2 | 1+√-7/2 | 1+√-7/2 | -1+√-7/2 | complex lifted from C2×C7⋊C3 |
ρ20 | 3 | -3 | 3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | 1+√-7/2 | -1+√-7/2 | 1-√-7/2 | 1+√-7/2 | -1-√-7/2 | 1-√-7/2 | complex lifted from C2×C7⋊C3 |
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)
G:=sub<Sym(28)| (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)>;
G:=Group( (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27) );
G=PermutationGroup([[(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27)]])
G:=TransitiveGroup(28,14);
C22×C7⋊C3 is a maximal subgroup of
Dic7⋊C6
Matrix representation of C22×C7⋊C3 ►in GL4(𝔽43) generated by
42 | 0 | 0 | 0 |
0 | 42 | 0 | 0 |
0 | 0 | 42 | 0 |
0 | 0 | 0 | 42 |
1 | 0 | 0 | 0 |
0 | 42 | 0 | 0 |
0 | 0 | 42 | 0 |
0 | 0 | 0 | 42 |
1 | 0 | 0 | 0 |
0 | 24 | 25 | 1 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
6 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 18 | 42 | 42 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(43))| [42,0,0,0,0,42,0,0,0,0,42,0,0,0,0,42],[1,0,0,0,0,42,0,0,0,0,42,0,0,0,0,42],[1,0,0,0,0,24,1,0,0,25,0,1,0,1,0,0],[6,0,0,0,0,1,18,0,0,0,42,1,0,0,42,0] >;
C22×C7⋊C3 in GAP, Magma, Sage, TeX
C_2^2\times C_7\rtimes C_3
% in TeX
G:=Group("C2^2xC7:C3");
// GroupNames label
G:=SmallGroup(84,9);
// by ID
G=gap.SmallGroup(84,9);
# by ID
G:=PCGroup([4,-2,-2,-3,-7,107]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^7=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations
Export
Subgroup lattice of C22×C7⋊C3 in TeX
Character table of C22×C7⋊C3 in TeX